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A B S T R A C T

Edible oils, a major source of dietary fat, are frequently contaminated with dibutyl phthalate (DBP) and benzo(a) 
pyrene (BaP), posing serious food safety risks. To enhance the accuracy of immunoassays in complex oil matrices, 
we developed a point-of-care testing platform that integrates bimetallic porous carbon nanomaterials as multi
functional signaling probes with a multi-algorithm framework driven by a voting model weighting algorithm. 
The porous carbon material Zn-CN was synthesized via organic solution coordination followed by high- 
temperature pyrolytic derivatization. Pt-Zn-CN was subsequently prepared by incorporating platinum nano
particles into Zn-CN through reductive stirring at room temperature. This nanomaterial exhibits excellent pho
tothermal properties and dispersibility, and its large surface area and porous architecture facilitate efficient 
antibody coupling and target enrichment. The resulting nanoprobes act as multifunctional signal transducers to 
enhance the recognition and amplification of antigen–antibody interactions. The multi-algorithm framework 
leverages bionic swarm intelligence and autonomous decision-making to perform high-precision image seg
mentation, attaining 97.6 % contour recognition and 95.7 % detection accuracy within 0.03 s. This platform 
enables ultra-fast early warning and achieves ultra-low detection limits of 0.184 ng/mL for DBP and 0.096 ng/ 
mL for BaP. A user-friendly graphical user interface supports real-time quantification of BaP and DBP, providing 
intuitive safety warnings for edible oils.

1. Introduction

Edible oils are a key component of the global food system, with 
annual production exceeding 200 million tonnes [1]. Approximately 40 
% of this total is allocated for direct human consumption [2]. As a pri
mary source of dietary fat, edible oils provide essential fatty acids and 
energy [3,4]. Consequently, ensuring their safety has become a critical 
concern. Research has shown that PAHs and phthalates are present in 
nearly all edible oil samples collected worldwide [5]. Dibutyl phthalate 
(DBP) is a commonly used and toxic phthalate plasticizer [6]. Edible oils 

may become contaminated when they come into contact with plastic 
products containing DBP during transportation, storage, or packaging 
[7]. DBP exhibits significant reproductive and developmental toxicity, 
disrupting the human endocrine system, causing developmental de
formities in the reproductive system, and increasing the risk of cancer 
through long-term accumulation [8,9]. Among the PAHs in edible oils, 
benzo[a]pyrene (BaP) exhibits the highest contamination rate and is the 
most toxic [10,11]. It is classified as a Group 1 carcinogen by the In
ternational Agency for Research on Cancer [11]. BaP is typically 
generated during the high-temperature processing of oilseeds, such as 
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drying, frying, and refining, leading to contamination [12]. It is carci
nogenic, teratogenic, and mutagenic, with prolonged exposure resulting 
in immunotoxicity and reproductive toxicity [13,14]. The presence of 
DBP and BaP in edible oils poses a significant threat to human health.

The development of efficient, sensitive, and rapid detection methods 
is crucial to preventing the entry of DBP- and BaP-contaminated edible 
oils into the food chain. To this end, stringent regulatory standards have 
been established in countries such as the United States, the European 
Union, Japan, and China (Table S1). Point-of-care testing (POCT) 
technology offers a simple, rapid, and cost-effective approach [15,16], 
with lateral flow immunoassay (LFIA), photoelectrochemistry, and 
CRISPR techniques successfully applied to detect DBP and BaP in edible 
oils [17–20]. Although the sensitivity of most POCTs meets the re
quirements for on-site screening of contaminants, the complexity of 
edible oil matrices and the subjective nature of signal interpretation may 
lead to result misjudgment [21]. Therefore, the development of a user- 
friendly, intelligent judgment platform integrated with the detection 
system is essential. This platform not only provides fast and accurate 
results without manual interpretation but also facilitates the broader 
adoption and application of detection technology.

In LFIA detection, issues such as uneven distribution of signal bands 
and subjective errors in manual interpretation reduce detection accu
racy [22]. In recent years, artificial intelligence (AI)-assisted analysis 
has been increasingly applied in this field, offering a promising solution 
to these challenges [23]. By leveraging standardized image processing 
techniques, AI can automate result interpretation and enhance detection 
accuracy [24,25]. Commonly used image processing algorithms include 
preprocessing techniques (e.g., noise reduction and contrast enhance
ment), edge detection methods (e.g., Canny's algorithm), color analysis 
(e.g., hue comparison and color space conversion), template matching, 
and morphological processing [26–28]. These methods enhance image 
quality, extract key features, and enable precise analysis of color band 
variations [29,30]. Significant advancements in image processing have 
been made in medical diagnostics, where these techniques have been 
successfully employed for qualitative and quantitative analysis of 
physiological indicators in saliva, body fluids, and blood [31–34]. Re
searchers designed a hue-recognizable LFIA using a host–guest assembly 
of high-color-purity semiconductor nanoplatelets. For image analysis, 
the incorporation of narrow-emission and color-tunable fluorescent 
probes enabled a gradient-based colorimetric detection scheme. This 
gradient-based hue change allows for precise image capture and nu
merical decoding via smartphones and other portable devices, thereby 
significantly enhancing the visualization and quantification capabilities 
of LFIA. This approach holds strong potential for intelligent image 
recognition and rapid diagnostics, particularly in home-based or 
resource-limited settings [35]. In addition, there's another study. Re
searchers have developed a dual-mode LFIA for rapid and accurate 
detection of chloroacetamide herbicides. The machine learning algo
rithm is used for image processing. By segmenting the region of interest, 
extracting multiple statistical features from RGB channels and estab
lishing multiple regression models, the accurate quantification of her
bicide concentration is realized, which overcomes the limitation of 
traditional univariate fitting that relies on manual parameter adjustment 
and is disturbed by the environment, and the recovery rate in corn 
samples reaches 85.4–109.3 %, which provides a new method for LFIA's 
intelligent image processing and complex matrix detection [36]. These 
studies underscore the potential and promise of applying image pro
cessing techniques to LFIA for the safety monitoring of edible oils. 
Although the aforementioned reports have proposed certain strategies to 
address issues such as subjectivity in examinations, difficulties in 
quantitative assessment, they are still constrained by challenges related 
to accuracy, image noise interference, and the lack of intelligent opti
mization of algorithm parameters.

In this study, we developed a voting model weighting algorithm 
(VMWA)-driven multi-algorithmic platform integrated with point-of- 
care testing (MAPOCT). This platform intelligently analyzes and 

quantifies typical contaminants, such as DBP and BaP, in edible oils, 
classifying the oil as either ‘safe’ or ‘warning’. To achieve multidimen
sional detection, we synthesized a bimetallic porous carbon material (Pt- 
Zn-CN) via high-temperature derivatization and metal hybridization of 
ZIF-8. This material was combined with a biorecognition reagent 
(antibody) to create a multifunctional immunodetection probe for the 
MAPOCT platform, which utilizes biomimetic ant colony optimization 
and autonomous decision-based segmentation for high-precision image 
segmentation and analysis. The platform dynamically adapts to varia
tions in background and lighting conditions, ensuring stable and accu
rate detection performance. This study offers three key advantages: (1) 
The synthesized Pt-Zn-CN exhibits excellent dispersive and photo
thermal properties, with its large surface area and porous structure 
enhancing antibody adsorption and coupling. (2) The POCT simulta
neously detects DBP and BaP in edible oils, achieving detection limits of 
0.184 ng/mL and 0.096 ng/mL, respectively, demonstrating high 
sensitivity and accuracy. (3) A user-friendly, VMWA-driven multi- 
algorithmic platform was established, enabling multidimensional 
edible oil safety monitoring with AI-assisted readings.

2. Experimental section

2.1. Materials and apparatus

Anti-BaP monoclonal antibody (mAb) and anti-DBP mAb were pre
pared in our lab. Standard BaP, standard DBP, zinc nitrate hexahydrate, 
2-methylimidazole (2-MI), sodium citrate dihydrate, hydrogen hexa
chloroplatinate hexahydrate, and anhydrous methanol were obtained 
from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Bap- 
BSA and DBP-BSA conjugate were purchased from Biodragon Technol
ogy Co. (Suzhou, China). Bovine serum albumin (BSA) and poly
vinylpyrrolidone (PVPK-30) were bought from Sigma-Aldrich (MO, 
USA). The sample pads of fusion 3 were procured from Jieyi Biotech
nology Co., Ltd. (Shanghai, China). The NC membranes (FF120HP) and 
sample pads of fusion 5 were obtained from Whatman (Meterstone, UK). 
Nitrocellulose (NC) membranes of CN 95, absorbent pads, and polyvinyl 
chloride (PVC) substrate plates were purchased from Millipore Co. 
(Bedford, MA, USA). BaP and DBP solid phase extraction columns were 
obtained from Biocomma Technology Co. (Shenzhen, China). Unless 
otherwise stated, all chemicals and solvents were of analytical grade or 
above.

The tube muffle furnace (Kejing Co., Ltd., Hefei, China) was used to 
prepare the photothermal nanomaterial Zn-CN. The probe was synthe
sized by a high-speed freezing centrifuge (Shuoguang Electronic Tech
nology Co., Ltd., Shanghai, China). The immunochromatographic strips 
were prepared from XYZ3050 dispensing platform and CM4000 guillo
tine cutter (BioDot, Irvine, CA, USA). Photothermal images of Pt-Zn-CN 
and LFIA were collected with an infrared (IR) thermal camera (FLIR 
Systems Inc., USA) under 808 nm laser irradiation (Taizhu Technology 
Co., Ltd., Shenzhen, China). The maximum absorption wavelengths 
were obtained by scanning antibody, Pt-Zn-CN, and immunoprobes 
using an ultraviolet-visible spectrophotometer (UV–Vis) (Fusion, Wal
tham, Massachusetts, USA). HPLC (Wukong Instrument Co., Ltd., 
Shandong, China) was used to detect the BaP content in cooking oil. 
GC–MS (Agilent Technologies Inc., USA) was used to detect the DBP 
content in cooking oil.

2.2. Preparation of Pt-Zn-CN

Initially, 1.013 g of Zn (NO3)2⋅6H2O and 0.657 g of 2-MI were dis
solved in 50 mL of anhydrous methanol, and the resulting solutions were 
mixed. The mixture was stirred at room temperature for 24 h to facilitate 
the crystallization of ZIF-8 [37]. The precipitate was then collected by 
centrifugation at 10,000 rpm for 15 min, washed six times with meth
anol, and dried under vacuum at 60 ◦C overnight. The Zn-CN composite 
was synthesized through high-temperature carbonization. Specifically, 
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ZIF-8 was transferred to a tube furnace, filled with nitrogen, and heated 
at a rate of 2 ◦C/min to 800 ◦C. The temperature was maintained at 
800 ◦C for 2 h before cooling, yielding the black Zn-CN product. A total 
of 10 mg of Zn-CN was dissolved in 10 mL of ultrapure water and 
dispersed via sonication. To the resulting Zn-CN dispersion, 1 mL of 
Na3C6H5O7⋅2H2O (20 mM) and 1 mL of H2PtCl6⋅6H2O (8 mM) were 
sequentially added, and the mixture was stirred for 1 h. Following this, a 
NaBH4 solution was introduced, and stirring was continued for an 
additional 2 h. Upon completion of the metal ion reduction, the free 
metal particles were removed by rinsing the solution six times with ul
trapure water.

2.3. Preparation of BaP-mAb@Pt-Zn-CN and DBP-mAb@Pt-Zn-CN 
probes

The probes were synthesized by mixing Anti-BaP and Anti-DBP an
tibodies (500 μL, 0.2 mg/mL) with Pt-Zn-CN (200 μL, 1.0 mg/mL) for 1 h 
at 180 rpm at room temperature. Following this, unadsorbed antibodies 
were removed by centrifugation at 10,000 rpm for 15 min at 4 ◦C. The 
BaP-mAb@Pt-Zn-CN and DBP-mAb@Pt-Zn-CN probes were then 
dispersed in 400 μL of PBS solution containing 2 % (m/v) BSA and 
agitated slowly for 2 h to block the remaining binding sites on the sur
face of the materials. After centrifugation, the probes were washed three 
times with deionized water, resuspended in 200 μL of PBS buffer, and 
stored at 4 ◦C.

2.4. Characterization of Pt-Zn-CN and immunoprobes

The morphology of ZIF-8, Zn-CN, and Pt-Zn-CN was characterized 
using a JEM-1400 flash transmission electron microscope (TEM, Hitachi, 
Japan) operated at an accelerating voltage of 80 kV. Elemental distri
bution was verified by energy-dispersive spectroscopy (EDS, Thermo 
Fisher, Hillsboro, CA, USA). The structural composition of Zn-CN and Pt- 
Zn-CN was analyzed by X-ray photoelectron spectroscopy (XPS, Thermo 
Fisher, Hillsboro, CA, USA), and the particle size distributions of Zn-CN 
and Pt-Zn-CN were measured by dynamic light scattering (DLS, Malvern, 
Worcestershire, UK). Field emission scanning electron microscopy 
(SEM, Hitachi, Japan) at 5 kV was used to characterize the BaP- 
mAb@Pt-Zn-CN and DBP-mAb@Pt-Zn-CN probes. Additionally, dy
namic light scattering and zeta potential measurements were performed 
with a Mastersizer 2000 (Malvern, UK). Fourier transform infrared (FT- 
IR) spectra of the probes, covering a spectral range of 400–4000 cm− 1, 
were acquired on a Thermo Scientific Nicolet iS10 spectrometer 
(Thermo Fisher Scientific, USA).

2.5. Construction of multifunctional immunosensor

A dual-target, dual-mode lateral flow immunoassay was constructed 
using a base plate, NC membrane, sample pad, and absorbent pad. In 
brief, BaP-BSA (0.5 mg/mL), DBP-BSA (0.5 mg/mL), and goat anti- 
mouse IgG (1 mg/mL) were dispensed onto the NC membrane at a 
rate of 0.8 μL/cm to form the test line (T line) and control line (C line), 
respectively. The NC membrane was then dried at 37 ◦C for 2 h. Sample 
pads (Fusion 3 and Fusion 5), NC membranes (CN95, IAB120, IAB135, 
and FF 120 HP), and absorbent pads were sequentially assembled on a 
substrate (60 mm × 30 cm) with 1–3 mm overlaps. The assembled films 
were finally cut into 4 mm-wide strips using a guillotine cutter and 
stored under dry conditions for further use.

2.6. BaP and DBP detection by POCT

The assay probe mixture was prepared by dispersing 20 μL of 1.0 mg/ 
mL BaP-mAb@Pt-Zn-CN probe and 100 μL of 1.0 mg/mL DBP-mAb@Pt- 
Zn-CN probe into 880 μL of flow buffer. Under optimized reaction 
conditions, 50 μL of BaP and DBP mixed standard solutions at varying 
concentrations (final concentrations of 0.1, 0.5, 5, 10, 50, 100, 500, and 

1000 ng/mL) were added to the probe mixture. The test paper was then 
immersed in the mixture for 7 min, and bright grey lines were visually 
observed. Photothermal signals were captured using a thermal imager 
under 808 nm laser irradiation.

The colorimetric and photothermal signals were acquired using a 
smartphone. For quantitative analysis, the grayscale colorimetric images 
were converted to 8-bit grayscale images using ImageJ software. The 
colorimetric signal was then converted to grayscale intensity (I), and a 
calibration curve was generated by plotting the rate of change in gray
scale intensity (y) against the concentration of BaP and DBP standard 
solutions (x). Standard curves of temperature change (y) versus the 
concentration of BaP and DBP standard solutions (x) were constructed 
from the collected photothermal signals. The limit of detection (LOD) for 
the three signals was calculated based on Eq. (1). 

LOD = 3σ/S (1) 

S represents the slope of the standard curve; σ represents the standard 
deviation of 11 negative samples.

Additionally, the specificity of the POCT for BaP and DBP was 
evaluated by introducing homologous interferents for BaP (fluo
ranthene, benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[a] 
anthracene, and benzo[k]fluoranthene) and DBP (DMP, DEHP, DiBP, 
DiNP, and BBP). A 50 μL aliquot of the mixed detection probe was 
combined with 50 μL of interferent (final concentration of 50 ng/mL) 
and added to the microtiter wells. The performance was then assessed 
using the quantitative POCT analysis procedure described above.

2.7. Construction of VMWA-driven multi-algorithm framework

The voting model weighting algorithm begins by converting the 
image to grayscale and performing preliminary processing using adap
tive threshold segmentation. The Ant Colony Optimization algorithm is 
then introduced to evaluate the effectiveness of different threshold 
combinations via a pheromone matrix. Based on pheromone intensity 
and heuristic evaluation values, the algorithm probabilistically selects 
among multiple parameter combinations. Each ant's parameters consist 
of block size and a constant (C), and through iterative optimization, the 
algorithm gradually refines the parameter selection to converge on the 
optimal threshold combination. The optimized block size and constant 
values are applied for adaptive threshold segmentation of the image, 
generating binary images and extracting image contours. The algorithm 
then analyzes the contours, retaining only those with the largest area. To 
enhance the accuracy and effectiveness of the segmented regions, the 
area of the smallest enclosing rectangle is used as the evaluation crite
rion. The Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) algorithm is introduced to adaptively segment the image into 
regions and effectively remove noise points by clustering the gradient of 
the image's grayscale map. After completing region segmentation and 
feature extraction, the algorithm further analyzes the extracted feature 
values using a linear regression model to obtain quantitative values for 
DBP and BaP. Additionally, based on the features extracted using the 
photothermal detection algorithm, quantitative predictions were made 
using the Random Forest (RF) algorithm. This paper presents a weighted 
voting mechanism that integrates the quantitative results from both 
methods. Based on the performance of the linear regression and RF 
models, specifically the Root Mean Square Error (RMSE) and Coefficient 
of Determination (R2), the prediction results of both models are 
weighted to derive the optimal quantitative values for DBP and BaP. 
Finally, a graphical user interface is developed using Python and the 
Tkinter framework to facilitate interaction between the user and the 
system.

2.8. Sample preparation

The application of MAPOCT for the detection of real samples was 
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demonstrated using soybean oil as a model matrix. For BaP sample 
preparation, 1.0 g of soybean oil was weighed, followed by the addition 
of 5 mL of n-hexane. Ultrasonic extraction was performed for 10 min, 
after which the supernatant was centrifuged at 3000 rpm for 3 min. The 
resulting solution was then purified using a solid-phase extraction (SPE) 
column to obtain the final extract for analysis. For DBP sample prepa
ration, 1.0 g of soybean oil was weighed into a glass centrifuge tube, and 
4 mL of acetonitrile along with 200 μL of n-hexane were added. Ultra
sonic extraction was performed for 20 min, and the supernatant was 
centrifuged at 4000 rpm for 6 min. The resulting solution was purified 
using an SPE column to obtain the final extract for measurement.

3. Results and discussion

3.1. Preparation and characterization of Pt-Zn-CN assembly

The schematic illustrating the fabrication process of Pt-Zn-CN was 

presented in Fig. 1A. ZIF-8 was synthesized using the organic solution 
coordination method, with Zn2+ as the metal center and 2-MI as the 
organic ligand [38]. TEM revealed that ZIF-8 exhibits a smooth and 
uniform rhombic dodecahedral morphology with an approximate 
diameter of 200 nm (Fig. 2A). ZIF-8 was transformed into the porous 
carbon material Zn-CN through high-temperature pyrolysis derivation. 
This process preserved the original shape and size of ZIF-8 while 
rendering its surface rough and rich in pores (Fig. 2B). Pt-Zn-CN was 
synthesized by infiltrating and immobilizing Pt nanoparticles within the 
pores of Zn-CN through a simple reductive stirring process at room 
temperature. The incorporation of Pt nanoparticles led to a reduction in 
the surface roughness of Pt-Zn-CN compared to Zn-CN (Fig. 2C). 
Meanwhile, the synthesized Pt-Zn-CN possesses a high surface area, 
which facilitates enhanced antibody enrichment efficiency. To further 
confirm the successful assembly of Pt-Zn-CN, we conducted character
ization analyses using energy-dispersive X-ray spectroscopy (EDX) and 
TEM-EDX elemental mapping. The results indicate that the primary 

Fig. 1. Schematic illustration. (A) Synthesis of DBP and BaP probe. (B) Competitive mechanisms for multimodal analysis of DBP and BaP, (a) grey scale colorimetric 
signal; (b) photothermal signal. (C) MAPOCT applied to edible oil testing process.
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constituent elements of Zn-CN are C, N, O, and Zn (Fig. 2D, E, and F), 
with Pt detected at a level of 0.02 %. This low Pt content is attributed to 
interference signals generated by the interaction of the electron beam (e. 
g., scattered and secondary electrons) with the sample or its environ
ment, leading to background noise in the mapping. In contrast, the main 
constituent elements of Pt-Zn-CN are identified as C, N, O, Zn, and Pt 
(Fig. 2G, H, and I), with Pt content measured at 0.5 %. This result 
confirms the successful synthesis of Pt-Zn-CN.

The surface morphology of the photothermal nanomaterials was 
examined using SEM (Fig. 3A and B). Compared to Zn-CN, Pt-Zn-CN 
exhibited multiple bright spots on its surface, attributed to the attach
ment of Pt nanoparticles. The surface chemical composition and struc
ture of Pt-Zn-CN were analyzed using XPS. As shown in Fig. 3C, five 
elements (C, N, O, Zn, and Pt) were identified on the surface of Pt-Zn-CN, 
consistent with the results obtained from EDS analysis. High-resolution 
XPS was used to characterize the C 1s, Pt 4f, N 1s, and Zn 2p spectra of 
Pt-Zn-CN. The C 1s spectrum was deconvoluted into four distinct peaks 
at 284.04 eV, 284.80 eV, 286.23 eV, and 288.09 eV, corresponding to 
C––C, C–C, C–O, and C––O bonds, respectively (Fig. 3D). The Pt 4f 
spectrum was deconvoluted into two characteristic peaks at 70.86 eV 

and 74.54 eV, corresponding to Pt0 4f7/2 and Pt0 4f5/2, respectively 
(Fig. 3E). In addition, the N 1 s and Zn 2p spectra were deconvoluted 
into three and two distinct peaks, respectively (Fig. S1). The water sol
ubility and dispersibility of Pt-Zn-CN were evaluated. In its dry state, Pt- 
Zn-CN appeared as a black powder. Upon dissolving in ultrapure water 
and undergoing sonication for 5 min, it dispersed uniformly in water 
(Fig. 3F). The particle size of Pt-Zn-CN in water was slightly larger than 
that of Zn-CN (Fig. 3G). Moreover, the zeta potential of Pt-Zn-CN was 
higher than that of Zn-CN (Fig. 3H), with the increased zeta potential 
indicating improved dispersion of the solution. This enhanced aqueous 
dispersibility of Pt-Zn-CN was attributed to the assembly of Pt on the 
surface, which altered the surface charge distribution and increased 
electrostatic repulsion between particles. The good dispersion of Pt-Zn- 
CN is more beneficial for the synthesis of immunodetection probes and 
the chromatography of lateral flow immunodetection.

3.2. Photothermal properties of Pt-Zn-CN assembly

As shown in Fig. S2, Pt-Zn-CN has the potential to perform efficient 
photothermal conversion. To evaluate the photothermal properties of 

Fig. 2. Synthesis of ZIF-8, Zn-CN and Pt-Zn-CN. (A) TEM image of ZIF-8. (B) TEM image of Zn-CN. (C) TEM image of Pt-Zn-CN. (D) and (E) TEM-EDX elemental 
mapping of combined elements, carbon, nitrogen, zinc, and platinum of Zn-CN. (F) The corresponding EDS of Zn-CN, the atom percentage of C, N, Zn, and Pt el
ements. (G) and (H) TEM-EDX elemental mapping of combined elements, carbon, nitrogen, zinc, and platinum of Pt-Zn-CN. (I) The corresponding EDS of Pt-Zn-CN, 
the atom percentage of C, N, Zn, and Pt elements.
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Pt-Zn-CN, the solution was irradiated with an 808 nm laser, resulting in 
a gradual temperature increase with prolonged excitation time (Fig. 4A). 
Notably, the photothermal response temperature of Pt-Zn-CN exceeded 
that of Zn-CN by >10 ◦C under identical excitation conditions (Fig. 4B), 
demonstrating a significant enhancement in its photothermal perfor
mance. This enhancement is attributed to the incorporation of metallic 
platinum particles, which amplify the surface plasmon effect, minimize 
energy losses during non-radiative transitions, and significantly improve 
the photothermal conversion efficiency [39]. The photothermal mech
anism of Pt-Zn-CN is illustrated in Fig. 4C. Upon NIR irradiation, elec
trons in the valence band of Pt-Zn-CN absorb energy and are excited to 
the conduction band, forming electron-hole pairs. These excited elec
trons subsequently undergo non-radiative transitions, releasing energy 
as heat, and ultimately return to the ground state, completing the pho
tothermal conversion process [40,41]. As shown in Fig. 4D, the photo
thermal response temperature of the Pt-Zn-CN solution increases with 
both rising concentration and prolonged irradiation time. Under varying 
NIR laser power levels, a higher laser power result in a more pronounced 
photothermal effect (Fig. 4E). Whereafter, the thermal stability of Pt-Zn- 
CN was evaluated through three cycles of laser irradiation (Fig. 4F). 
Throughout the three photothermal cycles, the temperature remained 

stable, demonstrating the excellent photothermal stability of Pt-Zn-CN.

3.3. Demonstration of the integrated DBP-mAb@Pt-Zn-CN probe and 
BaP-mAb@Pt-Zn-CN probe

The DBP-mAb@Pt-Zn-CN probe (DBP probe) and BaP-mAb@Pt-Zn- 
CN probe (BaP probe) were synthesized via electrostatic adsorption 
coupling for the development of a dual-modal immunosensing platform 
designed for the detection of DBP and BaP in edible oils. The two 
immunodetection probes were well dispersed in PBS (Fig. S3). SEM 
imaging of DBP and BaP probes revealed a pseudo-spherical protruding 
antibody film attached to the probe surface (Fig. 5A and B). UV–Vis 
spectroscopy analysis (Fig. 5C) revealed that the DBP and BaP probes 
exhibited characteristic absorption peaks at 210 nm and 280 nm, cor
responding to the peptide bond and tryptophan, respectively. The ab
sorption spectrum of the Pt-Zn-CN solution remained stable at 0.7 a.u., 
which can be attributed to the black color of the solution, which absorbs 
both visible and ultraviolet light. Both probes displayed the character
istic absorption peaks of the antibody, and the absorbance remained 
above 0.7 a.u., indicating successful loading of the antibody onto the 
surface of Pt-Zn-CN. The probes were characterized using FT-IR 

Fig. 3. Characterization analysis of Pt-Zn-CN. (A) SEM image of Zn-CN. (B) SEM image of Pt-Zn-CN. (C) Survey XPS spectra of Zn-CN and Pt-Zn-CN. C 1s (D) and Pt 4f 
(E) spectra of Pt-Zn-CN. (F) Pt-Zn-CN aqueous solution before and after sonication. (G) DLS and (H) Zeta potential of Zn-CN and Pt-Zn-CN. Error bars represent the 
standard deviation from three independent experiments.
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spectroscopy (Fig. 5D). The three peaks observed at 3450 cm− 1, 2920 
cm− 1, and 1630 cm− 1 corresponded to the O–H stretching vibration, 
C–H stretching vibration, and O–H bending vibration due to hydrogen 

bonding, respectively. Additionally, the Zn–O vibrational absorption 
peak at 510 cm− 1 for both probes was identical to that of Pt-Zn-CN, 
confirming the success of the coupling. As shown in Fig. 5E, the 

Fig. 4. Photothermal performance analysis of Pt-Zn-CN. (A) The corresponding thermographic images of Pt-Zn-CN (100 μg/mL) for (a) 0 min, (b) 3 min, and (c) 5 
min (808 nm, 2.0 W/cm2). (B) Comparison of photothermal performance of Zn-CN and Pt-Zn-CN (200 μg/mL, 808 nm, 2.0 W/cm2, 6 min). (C) Mechanism for the 
photothermal performance of Pt-Zn-CN. (D) Thermograms for different concentrations and excitation times of Pt-Zn-CN. (E) Heat curve of Pt-Zn-CN solution (100 μg/ 
mL) under 808 nm laser with different laser densities. (F) Temperature variation of Pt-Zn-CN solution during three laser irradiation cycles.

Fig. 5. Characterization of DBP-mAb@Pt-Zn-CN probe and BaP-mAb@Pt-Zn-CN probe. (A) SEM image of DBP probe. (B) SEM image of BaP probe. (C) UV–Vis 
absorption spectra of Pt-Zn-CN, DBP probe, and BaP probe. (D) FT-IR spectra of Pt-Zn-CN, DBP probe, BaP probe, DBP mAb, and BaP mAb. (E) DLS and (F) Zeta 
potential of Pt-Zn-CN, DBP probe, and BaP probe. Error bars represent the standard deviation from three independent experiments.
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particle sizes of both probes were larger than that of Pt-Zn-CN, which 
can be attributed to the increase in hydrated particle size resulting from 
the attachment of antibodies to the surface of the material. Zeta po
tential analysis was performed to assess the change in surface charge of 
Pt-Zn-CN and the probes. As shown in Fig. 5F, the zeta potentials of the 
DBP probe (− 11.33 mV) and BaP probe (− 8.75 mV) were significantly 
altered compared to the negatively charged Pt-Zn-CN (− 18.53 mV), due 
to the introduction of the positively charged DBP mAb and BaP mAb.

3.4. The principle of POCT-mediated multifunctional sensing platform

As shown in Fig. 1B, the POCT platform for the detection of DBP and 
BaP in edible oils consists of an absorbent pad, a sample pad, a NC 
membrane, and a substrate. NC membranes pretreated with DBP-BSA, 
BaP-BSA, and goat anti-mouse IgG were employed as the T1, T2, and 
control lines for probe capture. The DBP probe and BaP probe served as 
signal labels, enabling both colorimetric and photothermal readings. As 
the probes traverse the POCT strip, the DBP probe specifically binds to 
DBP-BSA on the T1 line, forming an immune complex, while the BaP 
probe specifically binds to BaP-BSA on the T2 line. The remaining un
bound probes continue moving and bind to goat anti-mouse IgG 
immobilized on the control line. Thus, the immune complexes on the test 
line exhibited characteristic grey areas, and the chromatic signal of the 
test line was further enhanced over time. In the presence of DBP and BaP 
in the buffer system, DBP and DBP-BSA compete as antigens for the DBP 
probe, while BaP and BaP-BSA compete for the BaP probe. As the levels 
of DBP and BaP increase, fewer probes bind to the detection line, 
resulting in lighter chromaticity of the strips. This allows for both 
quantitative and qualitative detection through colorimetry. Attractively, 
the two detection probes exhibit excellent photothermal properties, and 
their photothermal signals can serve as supplementary indicators for the 
quantification of DBP and BaP. Overall, POCT offers a valuable and 
versatile platform for the detection of plasticizers and benzopyrene in 
edible oils.

3.5. Optimization of POCT-based sensing performance

The sensing performance of the POCT was optimized based on grey 
scale intensity, band definition and background interference. Among 
them, the optimal sample pad was Fusion 3 (Fig. S4) and the optimal NC 
film was 90-2A (Fig. S5). The composition of the buffer significantly 
influences the reaction efficiency, signal intensity, and sensitivity during 
the chromatographic process. Five different buffer formulations with 
varying compositions were designed (Table S2). Among them, the 
optimal buffer composition was determined to be 1 % PVPK-30, 1 % 
sucrose, 1 % BSA, 1 % Tween 20, and PBS (Fig. 6A). The concentration of 
the probe is directly proportional to the signal strength of the detection 
line (Fig. 6B); however, excessive probe concentration can reduce 
detection sensitivity. Therefore, the optimal working concentrations for 
the DBP and BaP probes were determined to be 50 μg/mL and 10 μg/mL, 
respectively, to ensure stable POCT signal output. In a reaction system 
with a total volume of 100 μL, the optimal methanol concentration was 
found to be 30 % (Fig. 6C). The chromatography time of POCT was 
optimized (Fig. 6D), with the signal intensity of the test line reaching 
saturation at 7 min. Thus, the optimal chromatography time was 
determined to be 7 min. Notably, the photothermal temperature of the 
test line increased with the 808 nm laser irradiation time (Fig. 6E), rising 
sharply and reaching saturation within 30 s. Therefore, the optimal IR 
irradiation time was found to be 30 s. The specificity of POCT for 
detecting DBP and BaP within the same system was evaluated (Fig. 6F). 
When the system contained only the BaP probe, BaP specifically bound 
to the T2 detection line but not to T1. Conversely, in the presence of only 
the DBP probe, binding occurred exclusively at T1. These results 
demonstrate that POCT can independently detect DBP and BaP with 
high specificity and without cross-reactivity.

3.6. The POCT assay for DBP and BaP

The sensing performance of the POCT for detecting DBP and BaP was 

Fig. 6. Optimization of key parameters of the POCT. (A) The probe buffer diluent recipe optimization. (B) Optimization of probe content. (C) Optimization of 
methanol content. (D) Optimizing probe chromatography time. (E) The optimization of NIR laser irradiation detection time. (F) Reciprocal interference experiments 
for DBP and BaP assays (Group 1: Contains only BaP probes; Group 2: Contains only DBP probes). Error bars represent the standard deviation from three independent 
experiments.
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evaluated under the optimized conditions described previously. This 
method analyzes various concentrations of DBP and BaP by measuring 
both colorimetric and photothermal signals. Fig. 7A illustrates the 
relationship between colorimetric signal intensity (I) and DBP concen
tration (0.5–1000 ng/mL). The regression equation is Y =

103.0–14.04×, with a correlation coefficient of R2 = 0.9859 (inset of 
Fig. 7A). The limit of detection (LOD) for DBP, determined using 11 
negative sample sets (Fig. S6A), was calculated to be 0.184 ng/mL based 
on the formula LOD = 3σ/S. The strips were excited by 808 nm laser 
light, and a standard curve was established by acquiring photothermal 
signals through smartphone thermal imaging. The linear relationship 
between ΔT and DBP concentration (1–1000 ng/mL) was established 
using the regression eq. Y = 20.15–5.793× (R2 = 0.9681) (Fig. 7B), with 
a LOD of 0.252 ng/mL (Fig. S6B). Similarly, the linear relationship be
tween the grey intensity and the concentrations of BaP (0.25–300 ng/ 
mL) under colorimetric signals is described by the regression eq. Y =
92.39–13.83× (R2 = 0.9812) (Fig. 7C), with a LOD of 0.096 ng/mL 
(Fig. S6A). A linear relationship between ΔT and BaP concentrations 
(0.5–300 ng/mL) was established, described by the regression eq. Y =
14.2–4.814× (Fig. 7D), with a correlation coefficient of R2 = 0.9773 and 
a LOD of 0.26 ng/mL (Fig. S6B). The POCT was also highly selective and 

reliably quantitative at significantly different concentrations (Fig. S7), 
with no significant cross-talk between detection zones. Compared to 
recently reported DBP and BaP assays (Table S3), this work offers high 
sensitivity, a wide detection range, and an overall detection time of only 
7.5 min. Furthermore, this approach enables the simultaneous detection 
of both DBP and BaP and can be integrated with intelligent analytical 
algorithms for rapid prediction and interpretation of results. This 
improvement is attributed to the photothermal nanomaterial Pt-Zn-CN, 
which efficiently enriches antibodies and possesses excellent photo
thermal properties, effectively enhancing both colorimetric and photo
thermal signal outputs. Additionally, specificity is a critical parameter in 
evaluating the performance of the POCT sensing platform. During the 
assay, DBP and BaP showed no significant cross-reactivity with the 
structural analogues and exhibited good specificity (Fig. S8). We eval
uated the stability of the test strips, which were stored in a room- 
temperature drying cabinet for 0, 20, 40, and 60 days. The contrast 
color and thermal signals were compared under identical detection 
conditions. The results (Fig. S9) demonstrated that there was no sig
nificant change in either signal after 60 days of storage, indicating that 
the immunosensor exhibits good stability.

Fig. 7. Dual-modal signal output analysis of DBP and BaP. (A) Colorimetric detection of DBP (a-h DBP concentration (ng/mL) were: 0.5, 1, 5, 20, 100, 300, 500, 
1000), inset: linear relationship between concentration and intensity ratio of DBP. (B) Temperature response assay for DBP, inset: linear relationship between the 
concentration of DBP and the temperature difference ratio. (C) Colorimetric detection of BaP (a-h BaP concentration (ng/mL) were: 0.05, 0.5, 1, 5, 10, 50, 100, 300), 
inset: linear relationship between concentration and intensity ratio of BaP. (D) Temperature response assay for BaP, inset: linear relationship between the con
centration of BaP and the temperature difference ratio.
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3.7. Multi-algorithm for quantitative analysis of DBP and BaP

Aiming at the pain points such as uneven grey scale of POCT test 
strips and difficulties in end-user interpretation, this study innovatively 
develops an intelligent diagnostic platform based on multimodal infor
mation fusion with VMWA (Fig. 8A), which achieves accurate prediction 
of BaP and DBP concentrations in edible oil and risk determination 
through the synergistic effect of bionic population intelligent optimi
zation algorithms and autonomous decision-making segmentation 
(Fig. S10). The software classifies the result as ‘safe’ when the DBP 
concentration in edible oil is ≤0.3 mg/kg; otherwise, it is classified as 
‘warning’. Similarly, when the BaP concentration is ≤10 μg/kg, the 
result is considered ‘safe’; otherwise, it is classified as ‘warning’. The 

platform adopts a three-step progressive architecture of intelligent 
optimisation-adaptive clustering-collaborative decision-making.

First, the algorithm performs image preprocessing on the test strip to 
convert the probe image into a grey-scale image for subsequent analysis. 
On this basis, an adaptive threshold segmentation method is used to 
dynamically adjust the threshold value according to the grey-scale 
characteristics of the local region, which overcomes the limitations of 
traditional global threshold segmentation when dealing with different 
brightness regions. In order to further optimise the segmentation effect, 
an adaptive threshold segmentation framework based on local contrast 
perception is proposed, and a dynamic optimisation algorithm in the 
parameter space is constructed by introducing the ant colony bionic 
algorithm, which is an intelligent optimisation mechanism of the colony. 

Fig. 8. Construction and performance analysis of MAPOCT. (A) Schematic Flowchart of VMWA. (B) Contour extraction recognition rate. (C) Algorithm prediction 
accuracy. (D) Algorithm running speed.
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The algorithm simulates the pheromone positive feedback mechanism in 
the foraging behaviour of ants in nature, transforms the optimization of 
block size and compensation coefficient (C) into a topological search 
problem of parameter combination, and guides the virtual ‘ants’ to 
independently evolve the optimal segmentation strategy in the iteration 
through the pheromone matrix. After completing the image segmenta
tion, the platform carries out region division and feature extraction. By 
analyzing the contours, only the region with the largest area is retained, 
and the area of the smallest external rectangle is used as the evaluation 
criterion to further improve the accuracy and effectiveness of the 
segmented region.

Secondly, POCT strips have the problem of uneven grey scale, and 
simple threshold segmentation and contour extraction are often unable 
to distinguish different regions finely in images with significant grey 
scale changes or strong noise. Moreover, the blurring of the boundary of 
the chromogenic region and noise interference seriously affect the ac
curacy of BaP and DBP readings. To overcome this challenge, in this 
study, we introduce the DBSCAN algorithm. The core advantage of the 
DBSCAN algorithm is that it does not need to set the number of clusters 
in advance, and is able to automatically identify the clusters of arbitrary 
shapes, and to detect the noise. The core advantage of the DBSCAN al
gorithm is that it does not need to set the number of clusters in advance, 
and can automatically identify clusters of arbitrary shapes and is robust 
to noise. In the field of image processing, DBSCAN is widely used in 
image segmentation and feature extraction. The algorithm adaptively 
divides the image into multiple regions by clustering the gradient of the 
image grey-scale map and effectively excludes noise points. Specifically, 
we calculate the gradient value of the image grey-scale map and obtain 
the grey-scale change information of each pixel point, which is used as 
the input data of the DBSCAN algorithm. On this basis, the DBSCAN 
algorithm clusters the grey-scale gradients based on the set parameters 
of neighbourhood radius (eps) and minimum number of samples 
(min_samples). In this way, the algorithm is able to automatically 
discover regions with more consistent grey-scale changes, and effec
tively screen the regions based on their area and grey-scale uniformity, 
and finally select the most representative regions for subsequent anal
ysis. In this study, the introduction of the DBSCAN algorithm effectively 
improves the accuracy and robustness of image segmentation.

Then, after completing the image multi-region semantic segmenta
tion and multi-dimensional feature extraction, this study constructs an 
intelligent analysis framework based on the collaborative decision- 
making of heterogeneous models. Aiming at the mapping relationship 
between the photothermal features of the detected strips and the con
centration of the target, a linear regression model was first introduced. 
Linear regression, as a classical and powerful data analysis tool, can 
provide preliminary estimation for concentration prediction by estab
lishing a linear mapping relationship between feature values and target 
concentration. On this basis, the Random Forest integrated learning 
algorithm is introduced to construct a nonlinear enhanced prediction 
model. In this study, features extracted based on the photothermal 
detection algorithm are fed into the Random Forest model, and its im
plicit feature combination capability is utilised to capture higher-order 
interaction effects in complex detection environments.

Ultimately, in order to give full play to the complementary advan
tages of heterogeneous models, this paper proposes a dual-indicator- 
driven dynamic weight adaptive fusion strategy. The mechanism con
structs a multidimensional model performance evaluation system that 
includes the inverse of the RMSE and the coefficient of determination 
(R2), where the RMSE measures the average error between the predicted 
value and the true value, and the R2 reflects the degree of model fit to the 
data. The weight assignment algorithm dynamically adjusts the decision 
weights of each model by assessing the generalisation performance of 
the model on the validation set in real time, which effectively solves the 
environmental adaptability limitation of the traditional static weighting 
mechanism. The weighted predictions are fused through a common 
voting mechanism to obtain the optimal quantitative values of BaP and 

DBP.
In this study, a total of 40 samples of DBP and BaP detection strips 

with different gradients were prepared, and these samples were 
respectively subjected to colorimetric quantitative computation based 
on the traditional contour extraction technique for extracting image 
contours and using the average grey value of the extracted region as the 
feature grey value, as well as to quantitative computation using the 
aforementioned intelligent diagnostic platform for multimodal infor
mation fusion, and were respectively evaluated for these algorithms for 
their contour extraction recognition rate, detection accuracy, and 
detection speed of these algorithms, and the results are shown in Fig. 8B, 
C, and D, where the contour extraction recognition rate is evaluated by 
using the intersection ratio of the extracted contour and the real contour 
as the evaluation index.

Results demonstrate that the multimodal information fusion intelli
gent diagnosis platform developed in this study, based on the VMWA, 
significantly outperforms traditional methods in terms of contour 
extraction recognition rate, detection accuracy, and detection speed.

Specifically, as shown in Fig. 8B, the contour recognition rates of the 
traditional Sobel and Canny operators are 75.4 % and 82.6 %, respec
tively. The lower recognition rates indicate their sensitivity to complex 
backgrounds and variations in illumination. In contrast, the threshold 
segmentation method (Threshold Segmentation) and the adaptive 
threshold segmentation method (Adaptive Threshold Segmentation) 
show improved contour recognition rates, reaching 87.2 % and 92.2 %, 
respectively. The VMWA method achieved the highest contour recog
nition rate of 97.6 %. This advantage is primarily attributed to the ant 
colony algorithm-optimized adaptive threshold segmentation method. 
By adjusting the segmentation threshold based on local contrast 
perception, this method enables the system to adapt to different lighting 
conditions and effectively removes background noise. The detection 
performance of MAPOCT was evaluated under different lighting con
ditions, as shown in Fig. S11. The algorithm demonstrated stable pre
dictive performance when analyzing identical concentrations of DBP 
and BaP under three illumination environments: outdoor daylight, in
door artificial light, and indoor natural daylight (Fig. S11). The co
efficients of variation for DBP and BaP detection were 2.9 % and 3.8 %, 
respectively, indicating good repeatability and robustness of the 
MAPOCT system. Moreover, the swarm intelligence optimization 
mechanism refines the block size and compensation coefficient through 
dynamic adjustment, further enhancing the precision of contour 
recognition.

In terms of detection accuracy, the threshold segmentation and 
adaptive threshold segmentation methods achieved rates of 85.0 % and 
90.0 %, respectively (Fig. 8C). The VMWA method further improved the 
detection accuracy to 95.7 %. This enhancement can be attributed to the 
following factors: First, the introduction of the DBSCAN enables the 
detection algorithm to effectively identify and exclude noise points, 
ensuring the stability of the feature regions. Second, while traditional 
methods rely solely on global thresholds or fixed edge detection oper
ators, the VMWA method combines adaptive clustering and collabora
tive decision-making strategies, enabling the self-adjustment of feature 
extraction methods in different regions and enhancing adaptability to 
complex backgrounds and low-contrast areas.

Regarding detection speed (Fig. 8D), the Sobel and Canny methods 
have longer processing times, at 0.5 s and 0.3 s, respectively. This is 
mainly because these methods require gradient calculations and non- 
maximum suppression for the entire image when computing edge in
formation, resulting in higher computational complexity. In contrast, 
the threshold segmentation-based methods significantly improved pro
cessing speed, with times of only 0.02 s and 0.03 s. The VMWA method 
maintains a fast detection speed while achieving high recognition and 
accuracy rates. This is primarily due to the following optimization 
strategies: First, the adaptive threshold segmentation reduces global 
calculations for the entire image, avoiding unnecessary computational 
overhead; second, the ant colony optimization algorithm accelerates the 
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parameter optimization process, enabling the algorithm to converge to 
the optimal segmentation strategy within a limited number of iterations.

3.8. Practical application of MAPOCT

To evaluate the sensing performance of POCT in real sample testing 
and to compare the accuracy of manual readings with MAPOCT results, 
three of the world's most widely consumed edible oils—palm oil, soy
bean oil, and rapeseed oil—were selected as test samples. The testing 
process is depicted in Fig. S12, where edible oil samples were extracted, 
purified, and subsequently subjected to MAPOCT and instrumental 
analysis. After extraction and purification, the color of the edible oil 
samples became significantly lighter compared to the original samples, 
effectively reducing matrix color interference (Fig. S13). The standard 
curve for DBP detection by GC–MS was established as Y = 905.1× +

1608 (Fig. S14A), with a retention time of 10.93 min (Fig. S14B). 
Similarly, the standard curve for BaP detection by HPLC was determined 
as Y = 2.898× + 0.7834 (Fig. S14C), with a retention time of 7.037 min 
(Fig. S14D). The spiked concentrations of DBP were 50 ng/mL, 200 ng/ 
mL, and 500 ng/mL, with the results of the three methods presented in 
Table S4. The recoveries for manual readings of POCT ranged from 
92.75 % to 104.84 %, with coefficients of variation (CV) below 7.08 %. 
For MAPOCT, the recoveries ranged from 94.46 % to 103.46 %, with CVs 
under 4.89 %. Similarly, the spiked concentrations of BaP were 1 ng/mL, 
5 ng/mL, and 20 ng/mL, and the results of the recovery experiments are 
shown in Table S5. The recoveries for manual readings of POCT ranged 
from 87.57 % to 94.80 %, with a CV of <6.02 %, while the recoveries 
predicted by MAPOCT ranged from 90.12 % to 101.91 %, with a CV 
under 4.61 %. These experiments demonstrated that MAPOCT-predicted 
results were more accurate and reduced the error associated with 
manual readings. In addition, to further evaluate the practical perfor
mance of the detection platform, we tested nine different types of real 
edible oil samples (Fig. S15), including palm oil, soybean oil, rapeseed 
oil, peanut oil, corn oil, sunflower oil, olive oil, sesame oil, and camellia 
oil. The comparative results obtained from both large-scale instruments 
and the MAPOCT platform showed that the CVs for DBP and BaP were 
<3.54 % and 7.80 %, respectively (Table S6). Moreover, the MAPOCT 
results exhibited strong correlations with those obtained by GC–MS and 
HPLC, indicating that the platform maintained high detection accuracy 
and stability across various complex edible oil matrices. These findings 
confirm that MAPOCT can reliably predict DBP and BaP contents in real- 
world edible oil samples.

4. Conclusion

In summary, we present a dual-target, dual-mode POCT method 
based on lateral flow immunoassay and establish a quantitative, 
MAPOCT employing a voting model weighting algorithm. This method 
is applied to the simultaneous detection of DBP and BaP in edible oils for 
early warning purposes. First, photothermal nanomaterial Zn-CN was 
synthesized via high-temperature pyrolysis of ZIF-8, followed by the 
loading of platinum nanoparticles to obtain Pt-Zn-CN. The resulting Pt- 
Zn-CN exhibited a rough and porous surface with a high specific surface 
area, facilitating antibody coupling and adsorption. The integration of 
platinum nanoparticles also imparted excellent aqueous dispersibility 
and enhanced photothermal properties. Subsequently, DBP-mAb@Pt- 
Zn-CN and BaP-mAb@Pt-Zn-CN probes were prepared through elec
trostatic coupling of specific monoclonal antibodies with the Pt-Zn-CN. 
The developed POCT system produced a stable colorimetric signal 
within 7 min and a stable photothermal signal within 30 s under 808 nm 
laser excitation. Under both detection modes, the limits of detection 
were 0.184 ng/mL for DBP and 0.096 ng/mL for BaP, demonstrating 
high sensitivity and rapid response for early warning. Finally, the 
MAPOCT platform was developed by integrating a voting model 
weighting algorithm with adaptive threshold segmentation based on the 
ant colony algorithm and detection region partitioning via the DBSCAN 

clustering algorithm. By combining a photothermal detection algorithm 
with a colorimetric regression model, a weighted voting mechanism was 
realized. This approach achieved a 97.6 % recognition rate of strip 
profiles, with an algorithm runtime of only 0.03 s. Leveraging multi- 
algorithm fusion driven by artificial intelligence, MAPOCT eliminates 
the need for manual parameter tuning inherent in traditional methods, 
significantly reduces human reading errors, enhances detection accu
racy, and provides a practical solution for the rapid screening of haz
ardous contaminants in food.
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